Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Etching Silicon Dioxide for CNT Field Emission Device

Authors: Glauvitz, Nathan; Coutu, Ronald A., Jr.; Collins, Peter J.; Starman, Lavern A.;

Etching Silicon Dioxide for CNT Field Emission Device

Abstract

Carbon nanotube (CNT) based electron field emission devices may have an advantage over metal Spindt tip style designs due to the ability to create a highly localized electric field at the extremely small diameter tip of the CNT. The primary objective for this work is to create a robust micro structure to support low voltage field emission from the CNTs in a gated device. This paper will discuss the micro fabrication techniques used to etch 2–4 μm thick thermal oxide layers on silicon substrates. A chrome layer is deposited by electron beam evaporation to make the gate layer of the triode device and act as an etch mask. The metal layer is then coated with photoresist, patterned with hole openings ranging from 8 to 12 μm in diameter and wet etched in acid through to the SiO2 layer. Different dry etch chemistries combined with wet etching are used to study the effect on the SiO2 sidewall. The shape and slope of the SiO2 sidewall and gate opening play a vital role in fabricating a robust triode device that doesn’t easily short out when the CNTs are grown later in the process.

Country
United States
Related Organizations
Keywords

Hole Opening, Engineering, Buffer Oxide Etch, Gate Metal, Computer Engineering, Etch Rate, Electrical and Computer Engineering, Thermal Chemical Vapor Deposition, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!