
The execution of a project is nowadays often distributed among multiple sites. While some resource units are available at a certain site only, other resource units can be moved across the sites. The problem considered here consists of scheduling a single projects' activities which are interrelated by given precedence relationships of the completion-start type, require various renewable resource types during execution, and can be executed at the different sites of the project, such that the project makespan is minimized; transportation times must be taken into account if a resource unit is moved between two sites, or if two activities interrelated by a precedence relationship are executed at different sites. We present a continuous-time formulation of this problem as a mixed-binary linear program. In an experiment based on a set of 480 instances, we compared the performance of this novel formulation with a discrete-time formulation, which is the only formulation known from the literature; it turned out that when using the novel continuous-time formulation, considerably more instances can be solved to feasibility and to optimality, respectively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
