Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DZNE Pub
Article . 2010
Data sources: DZNE Pub
Genome Research
Article . 2010 . Peer-reviewed
Data sources: Crossref
MPG.PuRe
Article . 2010
Data sources: MPG.PuRe
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenotypic annotation of the mouse X chromosome

Authors: Cox, Brian J; Vollmer, Marion; Tamplin, Owen; Lu, Mei; Biechele, Steffen; Gertsenstein, Marina; Van Campenhout, Claude; +5 Authors

Phenotypic annotation of the mouse X chromosome

Abstract

Mutational screens are an effective means used in the functional annotation of a genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies. This method has the potential to screen all of the genes on the X chromosome without establishing mutant animals, as all gene-trapped embryonic stem (ES) cell lines are hemizygous null for mutations on the X chromosome. Based on this method, embryonic morphological phenotypes and expression patterns for 58 genes were assessed, ∼10% of all human and mouse syntenic genes on the X chromosome. Of these, 17 are novel embryonic lethal mutations and nine are mutant mouse models of genes associated with genetic disease in humans, including BCOR and PORCN. The rate of lethal mutations is similar to previous mutagenic screens of the autosomes. Interestingly, some genes associated with X-linked mental retardation (XLMR) in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR. The entire data set is available via the publicly accessible website (http://xlinkedgenes.ibme.utoronto.ca/).

Keywords

DNA Mutational Analysis, Lethal, Mice, Mental Retardation, Genes, X-Linked, genetics [Genetic Diseases, X-Linked], genetics [Chromosomes, Human, X], X -- genetics, Repressor Proteins -- genetics, Membrane Proteins -- genetics, genetics [Mental Retardation, X-Linked], BCOR protein, human, Genetic Diseases, X-Linked, Sciences bio-médicales et agricoles, methods [DNA Mutational Analysis], X Chromosome -- genetics, genetics [Membrane Proteins], Genetic Testing -- methods, Phenotype, Genetic Diseases, X-Linked -- genetics, Human, Proto-Oncogene Proteins -- genetics, X Chromosome, methods [Genetic Testing], genetics [X Chromosome], Molecular Sequence Data, Chromosomes, X-Linked Intellectual Disability, Proto-Oncogene Proteins, Animals, Humans, Genetic Predisposition to Disease, Genetic Testing, Chromosomes, Human, X, Base Sequence, PORCN protein, human, Membrane Proteins, Molecular Sequence Annotation, X-Linked, Repressor Proteins, genetics [Repressor Proteins], Genes, DNA Mutational Analysis -- methods, Genes, Lethal, genetics [Proto-Oncogene Proteins], Acyltransferases, ddc: ddc:540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 1%
bronze