
arXiv: 2302.00536
We present a quantum-inspired classical algorithm that can be used for graph-theoretical problems, such as finding the densest k subgraph and finding the maximum weight clique, which are proposed as applications of a Gaussian boson sampler. The main observation from Gaussian boson samplers is that a given graph’s adjacency matrix to be encoded in a Gaussian boson sampler is non-negative and that computing the output probability of Gaussian boson sampling restricted to a non-negative adjacency matrix is thought to be strictly easier than general cases. We first provide how to program a given graph problem into our efficient classical algorithm. We then numerically compare the performance of ideal and lossy Gaussian boson samplers, our quantum-inspired classical sampler, and the uniform sampler for finding the densest k subgraph and finding the maximum weight clique and show that the advantage from Gaussian boson samplers is not significant in general. We finally discuss the potential advantage of a Gaussian boson sampler over the proposed quantum-inspired classical sampler. Published by the American Physical Society 2024
Quantum Physics, quantum algorithms & computation, FOS: Physical sciences, Quantum Physics (quant-ph), quantum information processing
Quantum Physics, quantum algorithms & computation, FOS: Physical sciences, Quantum Physics (quant-ph), quantum information processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
