Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations

Authors: Alexander Schöll; Claus Braun; Michael A. Kochte; Hans-Joachim Wunderlich;

Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations

Abstract

We propose a fault tolerance approach for sparse matrix operations that detects and implicitly locates errors in the results for efficient local correction. This approach reduces the runtime overhead for fault tolerance and provides high error coverage. Existing algorithm-based fault tolerance approaches for sparse matrix operations detect and correct errors, but they often rely on expensive error localization steps. General checkpointing schemes can induce large recovery cost for high error rates. For sparse matrix-vector multiplications, experimental results show an average reduction in runtime overhead of 43.8%, while the error coverage is on average improved by 52.2% compared to related work. The practical applicability is demonstrated in a case study using the iterative Preconditioned Conjugate Gradient solver. When scaling the error rate by four orders of magnitude, the average runtime overhead increases only by 31.3% compared to low error rates.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!