Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UEF eRepository (Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UEF eRepository
Article . 2024
Data sources: UEF eRepository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CHEST Journal
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2025 . Peer-reviewed
Data sources: Research.fi
CHEST Journal
Article . 2024
CHEST Journal
Article . 2024 . Peer-reviewed
http://dx.doi.org/10.1016/j.ch...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increased Flow Limitation During Sleep Is Associated With Increased Psychomotor Vigilance Task Lapses in Individuals With Suspected OSA

Authors: Staykov, Eric; Mann, Dwayne L.; Duce, Brett; Kainulainen, Samu; Leppänen, Timo; Töyräs, Juha; Azarbarzin, Ali; +3 Authors

Increased Flow Limitation During Sleep Is Associated With Increased Psychomotor Vigilance Task Lapses in Individuals With Suspected OSA

Abstract

Impaired daytime vigilance is an important consequence of OSA, but several studies have reported no association between objective measurements of vigilance and the apnea-hypopnea index (AHI). Notably, the AHI does not quantify the degree of flow limitation, that is, the extent to which ventilation fails to meet intended ventilation (ventilatory drive).Is flow limitation during sleep associated with daytime vigilance in OSA?Nine hundred ninety-eight participants with suspected OSA completed a 10-min psychomotor vigilance task (PVT) before same-night in-laboratory polysomnography. Flow limitation frequency (percent of flow-limited breaths) during sleep was quantified using airflow shapes (eg, fluttering and scooping) from nasal pressure airflow. Multivariable regression assessed the association between flow limitation frequency and the number of lapses (response times > 500 ms, primary outcome), adjusting for age, sex, BMI, total sleep time, depression, and smoking status.Increased flow limitation frequency was associated with decreased vigilance: a 1-SD (35.3%) increase was associated with 2.1 additional PVT lapses (95% CI, 0.7-3.7; P = .003). This magnitude was similar to that for age, where a 1-SD increase (13.5 years) was associated with 1.9 additional lapses. Results were similar after adjusting for AHI, hypoxemia severity, and arousal severity. The AHI was not associated with PVT lapses (P = .20). In secondary exploratory analysis, flow limitation frequency was associated with mean response speed (P = .012), median response time (P = .029), fastest 10% response time (P = .041), slowest 10% response time (P = .018), and slowest 10% response speed (P = .005).Increased flow limitation during sleep was associated with decreased daytime vigilance in individuals with suspected OSA, independent of the AHI. Flow limitation may complement standard clinical metrics in identifying individuals whose vigilance impairment most likely is explained by OSA.

Keywords

lapses, Sleep Apnea, Adolescent, 610, sleepiness, OSA, desaturation severity, polysomnography, vigilance, 616, Reaction Time, Humans, Wakefulness, Psychomotor Performance/physiology, flow limitation, Sleep Apnea, Obstructive, sleep and breathing, arousal severity, apnea-hypopnea index, upper airway, automated, respiratory events, Obstructive/complications, Sleep, Psychomotor Performance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green