Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Data Science and Man...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science and Management
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science and Management
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

Anomalous node detection in attributed social networks using dual variational autoencoder with generative adversarial networks

Authors: Wasim Khan; Shafiqul Abidin; Mohammad Arif; Mohammad Ishrat; Mohd Haleem; Anwar Ahamed Shaikh; Nafees Akhtar Farooqui; +1 Authors

Anomalous node detection in attributed social networks using dual variational autoencoder with generative adversarial networks

Abstract

Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss it has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than the other models; we attribute this to the dataset's low dimensionality as the most probable explanation.

Keywords

Attributed networks autoencoder, Generative adversarial networks, Dual variational-autoencoder, Electronic computers. Computer science, Anomaly detection deep learning, QA75.5-76.95

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 1%
gold