
Summary: An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration and by perturbing the resulting step to retain feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other trust-region SQP approaches: the objective function can be used as a merit function, and the SQP subproblems are feasible for all choices of the trust-region radius. Global convergence properties are analyzed under various assumptions on the approximate Hessian. Under additional assumptions, superlinear convergence to points satisfying second-order sufficient conditions is proved.
Methods of successive quadratic programming type, trust-region algorithms, Nonlinear programming, nonlinear constrained optimization, feasible algorithm, sequential quadratic programming
Methods of successive quadratic programming type, trust-region algorithms, Nonlinear programming, nonlinear constrained optimization, feasible algorithm, sequential quadratic programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
