
The paper presents distributed and parallel δ-approximation algorithms for covering problems, where δ is the maximum number of variables on which any constraint depends (for example, δ = 2 for VERTEX COVER).Specific results include the following.≺ For WEIGHTED VERTEX COVER, the first distributed 2-approximation algorithm taking O(log n) rounds and the first parallel 2-approximation algorithm in RNC. The algorithms generalize to covering mixed integer linear programs (CMIP) with two variables per constraint (δ = 2).≺ For any covering problem with monotone constraints and submodular cost, a distributed δ-approximation algorithm taking O(log2 |C|) rounds, where |C| is the number of constraints. (Special cases include CMIP, facility location, and probabilistic (two-stage) variants of these problems.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
