
doi: 10.1002/jcc.20836
pmid: 17918283
AbstractA manager–worker‐based parallelization algorithm for Quantum Monte Carlo (QMC‐MW) is presented and compared with the pure iterative parallelization algorithm, which is in common use. The new manager–worker algorithm performs automatic load balancing, allowing it to perform near the theoretical maximal speed even on heterogeneous parallel computers. Furthermore, the new algorithm performs as well as the pure iterative algorithm on homogeneous parallel computers. When combined with the dynamic distributable decorrelation algorithm (DDDA) [Feldmann et al., J Comput Chem 28, 2309 (2007)], the new manager–worker algorithm allows QMC calculations to be terminated at a prespecified level of convergence rather than upon a prespecified number of steps (the common practice). This allows a guaranteed level of precision at the least cost. Additionally, we show (by both analytic derivation and experimental verification) that standard QMC implementations are not “perfectly parallel” as is often claimed. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008
Models, Statistical, Quantum Theory, Monte Carlo Method, Algorithms
Models, Statistical, Quantum Theory, Monte Carlo Method, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
