
doi: 10.3390/info16070540
In today’s digitalized educational landscape, the intelligent use of information is essential for personalizing learning, improving assessment accuracy, and supporting data-driven pedagogical decisions. This systematic review examines the integration of Application Programming Interfaces (APIs) powered by Artificial Intelligence (AI) to enhance educational information management and learning processes. A total of 27 peer-reviewed studies published between 2013 and 2025 were analyzed. First, a general description of the selected works was provided, followed by a breakdown by dimensions in order to identify recurring patterns, stated interests and gaps in the current scientific literature on the use of AI-driven APIs in Education. The findings highlight five main benefits: data interoperability, personalized learning, automated feedback, real-time student monitoring, and predictive performance analytics. All studies addressed personalization, 74.1% focused on platform integration, and 37% examined automated feedback. Reported outcomes include improvements in engagement (63%), comprehension (55.6%), and academic achievement (48.1%). However, the review also identifies concerns about privacy, algorithmic bias, and limited methodological rigor in existing research. The study concludes with a conceptual model that synthesizes these findings from pedagogical, technological, and ethical perspectives, providing guidance for more adaptive, inclusive, and responsible uses of AI in education.
educational data analytics, artificial intelligence in education, personalized learning, Information technology, application programming interfaces (APIs), T58.5-58.64, automated feedback
educational data analytics, artificial intelligence in education, personalized learning, Information technology, application programming interfaces (APIs), T58.5-58.64, automated feedback
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
