
Exosomes play a critical role in intracellular communication. The biogenesis and function of exosomes are regulated by multiple biochemical factors. In the present study, we find that mechanical force promotes the biogenesis of exosomes derived from periodontal ligament stem cells (PDLSCs) and alters the exosomal proteome profile to induce osteoclastic differentiation. Mechanistically, mechanical force increases the level of exosomal proteins, especially annexin A3 (ANXA3), which facilitates exosome internalization to activate extracellular signal-regulated kinase (ERK), thus inducing osteoclast differentiation. Moreover, the infusion of exosomes derived from PDLSCs into mice promotes mechanical force-induced tooth movement and increases osteoclasts in the periodontal ligament. Collectively, this study demonstrates that mechanical force treatment promotes the biogenesis of exosomes from PDLSCs and increases exosomal protein ANXA3 to facilitate exosome internalization, which activates ERK phosphorylation, thus inducing osteoclast differentiation. Our findings shed light on new mechanisms for how mechanical force regulates the biology of exosomes and bone metabolism.
Mice, Osteogenesis, Periodontal Ligament, Stem Cells, Animals, Osteoclasts, Cell Differentiation, Extracellular Signal-Regulated MAP Kinases, Annexin A3, Article
Mice, Osteogenesis, Periodontal Ligament, Stem Cells, Animals, Osteoclasts, Cell Differentiation, Extracellular Signal-Regulated MAP Kinases, Annexin A3, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
