
Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology.
Brain–computer interface, convolution neural network, discriminative and representative deep learning, stacked sparse autoencoder, feature fusion, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Brain–computer interface, convolution neural network, discriminative and representative deep learning, stacked sparse autoencoder, feature fusion, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
