
The present contribution is focused on the on-line combination of high performance liquid chromatography (HPLC), cryogenically modulated comprehensive two-dimensional gas chromatography (GC × GC), and triple quadrupole mass spectrometry (QqQ MS), generating a very powerful unified separation-science tool. The instrument can be used in seven different combinations ranging from one-dimensional HPLC with a photodiode array detector to on-line LC × GC × GC/QqQ MS. The main focus of the present research is directed to the LC-GC × GC/QqQ MS configuration, with its analytical potential shown in a proof-of-principle study involving a very complex sample, namely, coal tar. Specifically, a normal-phase LC process enabled the separation of three classes of coal tar compounds: (1) nonaromatic hydrocarbons; (2) unsaturated compounds (with and without S); (3) oxygenated constituents. The HPLC fractions were transferred to the GC × GC instrument via a syringe-based interface mounted on an autosampler. Each fraction was subjected to a specific programmed temperature vaporizer GC × GC/QqQ MS untargeted or targeted analysis. For example, the coal tar S-containing compounds were pinpointed through multiple-reaction-monitoring analysis, while full-scan information was attained for the oxygenated constituents.
Complex samples, Comprehensive two-dimensional gas chromatography, Multiple reaction monitoring, Photodiode array detectors, Programmed temperature vaporizer, Proof of principles, Separation science, Triple-quadrupole mass spectrometry, Equipment Design, Oxygen Compounds, Chromatography, High Pressure Liquid, Coal Tar, Gas Chromatography-Mass Spectrometry, Hydrocarbons
Complex samples, Comprehensive two-dimensional gas chromatography, Multiple reaction monitoring, Photodiode array detectors, Programmed temperature vaporizer, Proof of principles, Separation science, Triple-quadrupole mass spectrometry, Equipment Design, Oxygen Compounds, Chromatography, High Pressure Liquid, Coal Tar, Gas Chromatography-Mass Spectrometry, Hydrocarbons
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
