Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY NC SA
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A globally convergent difference-of-convex algorithmic framework and application to log-determinant optimization problems

Authors: Yao, Chaorui; Jiang, Xin;

A globally convergent difference-of-convex algorithmic framework and application to log-determinant optimization problems

Abstract

The difference-of-convex algorithm (DCA) is a conceptually simple method for the minimization of (possibly) nonconvex functions that are expressed as the difference of two convex functions. At each iteration, DCA constructs a global overestimator of the objective and solves the resulting convex subproblem. Despite its conceptual simplicity, the theoretical understanding and algorithmic framework of DCA needs further investigation. In this paper, global convergence of DCA at a linear rate is established under an extended Polyak--Łojasiewicz condition. The proposed condition holds for a class of DC programs with a bounded, closed, and convex constraint set, for which global convergence of DCA cannot be covered by existing analyses. Moreover, the DCProx computational framework is proposed, in which the DCA subproblems are solved by a primal--dual proximal algorithm with Bregman distances. With a suitable choice of Bregman distances, DCProx has simple update rules with cheap per-iteration complexity. As an application, DCA is applied to several fundamental problems in network information theory, for which no existing numerical methods are able to compute the global optimum. For these problems, our analysis proves the global convergence of DCA, and more importantly, DCProx solves the DCA subproblems efficiently. Numerical experiments are conducted to verify the efficiency of DCProx.

Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green