
Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are "manycore" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 114 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
