Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2025
License: CC BY
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Article . 2025
License: CC BY
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust direction-dependent gain-calibration of beam-modelling errors far from the target field

Authors: S A Brackenhoff; A R Offringa; M Mevius; L V E Koopmans; J K Chege; E Ceccotti; C Höfer; +4 Authors

Robust direction-dependent gain-calibration of beam-modelling errors far from the target field

Abstract

ABSTRACT Many astronomical questions require deep, wide-field observations at low radio frequencies. Phased arrays like LOFAR and SKA-Low (low band part of the Square Kilometre Array) are designed for this, but have inherently unstable element gains, leading to time, frequency, and direction-dependent gain errors. Precise direction-dependent calibration of observations is therefore key to reaching the highest possible dynamic range. Many tools for direction-dependent calibration utilize sky and beam models to infer gains. However, these calibration tools struggle with precision calibration for relatively bright (e.g. A-team) sources far from the beam centre. Therefore, the point spread function of these sources can potentially obscure a faint signal of interest. We show that, and why, the assumption of a smooth gain solution per station fails for realistic radio interferometers, and how this affects gain-calibration results. Subsequently, we introduce an improvement for smooth spectral gain constraints for direction-dependent gain-calibration algorithms, in which the level of regularization is weighted by the expected station response to the sky model. We test this method using direction-dependent calibration method ddecal and physically motivated beam-modelling errors for LOFAR-HBA (High-Band Antennas of the Low Frequency Array) stations. The new method outperforms the standard method for various calibration settings near nulls in the beam, and matches the standard inverse-variance-weighted method’s performance for the remainder of the data. The proposed method is especially effective for short baselines, both in visibility and image space. Improved direction-dependent gain calibration is critical for future high-precision SKA-Low observations, where higher sensitivity, increased antenna beam complexity, and mutual coupling call for better off-axis source subtraction, which may not be achieved through improved beam models alone.

Keywords

Cosmology and Nongalactic Astrophysics (astro-ph.CO), [PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], techniques: interferometric, first stars, reionization, software: simulations, Instrumentation and Methods for Astrophysics, FOS: Physical sciences, dark ages, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Cosmology and Nongalactic Astrophysics, methods: data analysis, Instrumentation and Methods for Astrophysics (astro-ph.IM)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid
Funded by
Related to Research communities