Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leiden University Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Physics
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Physics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Histogram‐based standardization of intravascular optical coherence tomography images acquired from different imaging systems

Authors: Liu, Shengnan (author); Dzyubachyk, Oleh (author); Eggermont, Jeroen (author); Nakatani, Shimpei (author); Lelieveldt, B.P.F. (author); Dijkstra, J. (author);

Histogram‐based standardization of intravascular optical coherence tomography images acquired from different imaging systems

Abstract

PurposeIntravascular optical coherence tomography (OCT) is widely used for analysis of the coronary artery disease. Its high spatial resolution allows for visualization of arterial tissue components in detail. There are different OCT systems on the market, each of which produces data characterized by its own intensity range and distribution. These differences should be taken into account for the development of image processing algorithms. In order to overcome this difference in the intensity range and distribution, we developed a framework for matching intensities based on the exact histogram matching technique.MethodsIn our method, the key step for using the exact histogram matching is to determine the target histogram. For this, we proposed two schemes: a global scheme that uses a single histogram as the target histogram for all the pullbacks, and a local scheme that selects for each single image a target histogram from a predefined database. These two schemes are compared on a unique dataset containing pairs of pullbacks that were acquired shortly after each other with systems from two vendors, St. Jude and Terumo. Pullbacks were aligned according to anatomical landmarks, and a database of matched histogram pairs was created. A leave‐one‐out cross validation was used to compare performance of the two schemes. The matching accuracy was evaluated by comparing: (a) histograms using Euclidean (dx2) and Kolmogorov–Smirnov (dKS) distances, and (b) median intensity level within anatomical regions of interest.ResultsLeave‐one‐out validation indicated that both matching schemes yield comparably high accuracies across the entire validation dataset. The local scheme outperforms the global scheme with marginally lower dissimilarities at both histogram level and intensity level. High visual similarity was observed when comparing the matched images to their aligned counterparts.ConclusionBoth local and global schemes are robust and produce accurate intensity matching. While local scheme performs marginally better than the global scheme, it requires a predefined histogram dataset and is more time consuming. Thus, for offline standardization of the images, the local scheme should be preferred for being more accurate. For online standardization or when another system is involved, the global scheme can be used as a simple and nearly‐as‐accurate alternative.

Keywords

histogram specification, intravascular optical coherence tomography (IVOCT), intensity standardization, 006, image intensity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 5
  • 13
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
13
5
Green
hybrid