Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Biometrics Behavior and Identity Science
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
DBLP
Article
Data sources: DBLP
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
h_docs
Article . 2024
License: CC BY NC ND
Data sources: h_docs
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mobile Contactless Fingerprint Presentation Attack Detection: Generalizability and Explainability

Authors: Jannis Priesnitz; Roberto Casula; Jascha Kolberg; Meiling Fang; Akhila Madhu; Christian Rathgeb; Gian Luca Marcialis; +2 Authors

Mobile Contactless Fingerprint Presentation Attack Detection: Generalizability and Explainability

Abstract

Contactless fingerprint recognition is an emerging biometric technology that has several advantages over contact-based schemes, such as improved user acceptance and fewer hygienic concerns. Like for most other biometrics, Presentation Attack Detection (PAD) is crucial to preserving the trustworthiness of contactless fingerprint recognition methods. For many contactless biometric characteristics, Convolutional Neural Networks (CNNs) represent the state-of-the-art of PAD algorithms. For CNNs, the ability to accurately classify samples that are not included in the training is of particular interest, since these generalization capabilities indicate robustness in real-world scenarios. In this work, we focus on the generalizability and explainability aspects of CNN-based contactless fingerprint PAD methods. Based on previously obtained findings, we selected four CNN-based methods for contactless fingerprint PAD: two PAD methods designed for other biometric characteristics, an algorithm for contact-based fingerprint PAD and a general-purpose ResNet18. For our evaluation, we use four databases and partition them using Leave-One-Out (LOO) protocols. Furthermore, the generalization capability to a newly captured database is tested. Moreover, we explore t-SNE plots as a means of explainability to interpret our results in more detail. The low D-EERs obtained from the LOO experiments (below 0.1% D-EER for every LOO group) indicate that the selected algorithms are well-suited for the particular application. However, with an D-EER of 4.14%, the generalization experiment still has room for improvement.

Countries
Germany, Italy
Keywords

Research Line: Computer vision (CV), Research Line: Human computer interaction (HCI), fingerprint; contactless; presentation attack, LTA: Interactive decision-making support and assistance systems, Research Line: Machine learning (ML), Biometrics, ATHENE, ddc:000, Machine learning, Spoofing attacks, LTA: Machine intelligence, algorithms, and data structures (incl. semantics), Fingerprint recognition, Branche: Information Technology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid