
doi: 10.1155/2020/2196049
Polarized smart antenna array has attracted considerable interest due to its capacity of matched reception or interference suppression for active sensing systems. Existing literature does not take full advantage of the combination of polarization isolation and smart antennas and only focuses on uniform linear array (ULA). In this paper, an innovative synthesis two-dimensional beampattern method with a null that has cross-polarization for polarized planar arrays is proposed in the first stage. This method aims to further enhance the capability of interference suppression whose optimization problem can be solved by second-order conic programming. In the second stage, a new sparse array-optimized method for the polarized antenna array is proposed to reduce the high cost caused by the planar array that is composed of polarized dipole antennas. Numerical examples are provided to demonstrate the advantages of the proposed approach over state-of-the-art methods.
HE9713-9715, Electrical engineering. Electronics. Nuclear engineering, Cellular telephone services industry. Wireless telephone industry, TK1-9971
HE9713-9715, Electrical engineering. Electronics. Nuclear engineering, Cellular telephone services industry. Wireless telephone industry, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
