
handle: 11572/193698
Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context around a pixel is also very important and can enhance the classification performance. In order to effectively exploit and fuse both the spatial context and spectral structure, we propose a novel two-stream deep architecture for HSI classification. The proposed method consists of a two-stream architecture and a novel fusion scheme. In the two-stream architecture, one stream employs the stacked denoising autoencoder to encode the spectral values of each input pixel, and the other stream takes as input the corresponding image patch and deep convolutional neural networks are employed to process the image patch. In the fusion scheme, the prediction probabilities from two streams are fused by adaptive class-specific weights, which can be obtained by a fully connected layer. Finally, a weight regularizer is added to the loss function to alleviate the overfitting of the class-specific fusion weights. Experimental results on real HSIs demonstrate that the proposed two-stream deep architecture can achieve competitive performance compared with the state-of-the-art methods.
Class-specific fusion; convolutional neural networks (CNNs); deep learning; Feature extraction; hyperspectral image (HSI) classification; Hyperspectral imaging; Machine learning; remote sensing; stacked denoising autoencoder (SdAE); Training; two-stream architecture.; Electrical and Electronic Engineering; Earth and Planetary Sciences (all)
Class-specific fusion; convolutional neural networks (CNNs); deep learning; Feature extraction; hyperspectral image (HSI) classification; Hyperspectral imaging; Machine learning; remote sensing; stacked denoising autoencoder (SdAE); Training; two-stream architecture.; Electrical and Electronic Engineering; Earth and Planetary Sciences (all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
