Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Institutional...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Geoscience and Remote Sensing
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-Stream Deep Architecture for Hyperspectral Image Classification

Authors: Siyuan Hao; Wei Wang; Yuanxin Ye; Tingyuan Nie; Lorenzo Bruzzone;

Two-Stream Deep Architecture for Hyperspectral Image Classification

Abstract

Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context around a pixel is also very important and can enhance the classification performance. In order to effectively exploit and fuse both the spatial context and spectral structure, we propose a novel two-stream deep architecture for HSI classification. The proposed method consists of a two-stream architecture and a novel fusion scheme. In the two-stream architecture, one stream employs the stacked denoising autoencoder to encode the spectral values of each input pixel, and the other stream takes as input the corresponding image patch and deep convolutional neural networks are employed to process the image patch. In the fusion scheme, the prediction probabilities from two streams are fused by adaptive class-specific weights, which can be obtained by a fully connected layer. Finally, a weight regularizer is added to the loss function to alleviate the overfitting of the class-specific fusion weights. Experimental results on real HSIs demonstrate that the proposed two-stream deep architecture can achieve competitive performance compared with the state-of-the-art methods.

Related Organizations
Keywords

Class-specific fusion; convolutional neural networks (CNNs); deep learning; Feature extraction; hyperspectral image (HSI) classification; Hyperspectral imaging; Machine learning; remote sensing; stacked denoising autoencoder (SdAE); Training; two-stream architecture.; Electrical and Electronic Engineering; Earth and Planetary Sciences (all)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!