Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemometrics and Int...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemometrics and Intelligent Laboratory Systems
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fitness partition-based multi-objective differential evolutionary algorithm and its application to the sodium gluconate fermentation process

Authors: Zhan Guo; Xuefeng Yan;

Fitness partition-based multi-objective differential evolutionary algorithm and its application to the sodium gluconate fermentation process

Abstract

Abstract The operating conditions of the fermentation process of sodium gluconate play a key role in the quality and quantity of its production. The fermentation process is highly nonlinear and dynamic, and several objects must be considered. To implement a global and efficient optimization for the fermentation process, a fitness partition-based multi-objective differential evolutionary algorithm (FPMDE) is proposed. In the FPMDE algorithm, the information in the target space, which expresses some superiority message, is used to guide the evolutionary process. Namely, according to the fitness values, the target space is divided into some sub-region, and then some optimal directions are extracted for individuals to search for the optimal region and finally approximate the Pareto front. Experimental results on 20 benchmark functions show its advantage in convergence and diversity compared with 5 other state-of-art algorithms. Further, three objective functions for the fermentation process of sodium gluconate are proposed, and the FPMDE algorithm is applied to obtain its Pareto front; the conversion rates and utilization rate of equipment has been improved. It is shown that the FPMDE can optimize the conditions of the production of sodium gluconate effectively and efficiently.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!