Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Application of Lite-GRU Embedding and VAE-Augmented Heterogeneous Graph Attention Network in Friend Link Prediction for LBSNs

Authors: Ziteng Yang; Boyu Li; Yong Wang; Aoxue Liu;

The Application of Lite-GRU Embedding and VAE-Augmented Heterogeneous Graph Attention Network in Friend Link Prediction for LBSNs

Abstract

Friend link prediction is an important issue in recommendation systems and social network analysis. In Location-Based Social Networks (LBSNs), predicting potential friend relationships faces significant challenges due to the diversity of user behaviors, along with the high dimensionality, sparsity, and complex noise in the data. To address these issues, this paper proposes a Heterogeneous Graph Attention Network (GEVEHGAN) model based on Lite Gate Recurrent Unit (Lite-GRU) embedding and Variational Autoencoder (VAE) enhancement. The model constructs a heterogeneous graph with two types of nodes and three types of edges; combines Skip-Gram and Lite-GRU to learn Point of Interest (POI) and user node embeddings; introduces VAE for dimensionality reduction and denoising of the embeddings; and employs edge-level attention mechanisms to enhance information propagation and feature aggregation. Experiments are conducted on the publicly available Foursquare dataset. The results show that the GEVEHGAN model outperforms other comparative models in evaluation metrics such as AUC, AP, and Top@K accuracy, demonstrating its superior performance in the friend link prediction task.

Related Organizations
Keywords

friend link prediction, Technology, QH301-705.5, T, Physics, QC1-999, heterogeneous graph, Engineering (General). Civil engineering (General), Chemistry, gated recurrent unit, variational autoencoder, TA1-2040, Biology (General), attention mechanism, QD1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold