Downloads provided by UsageCounts
handle: 10261/30134 , 2117/7485
In this paper we propose the application of the generalized median graph in a graph-based k-means clustering algorithm. In the graph-based k-means algorithm, the centers of the clusters have been traditionally represented using the set median graph. We propose an approximate method for the generalized median graph computation that allows to use it to represent the centers of the clusters. Experiments on three databases show that using the generalized median graph as the clusters representative yields better results than the set median graph.
This work has been supported by the Spanish research programmes Consolider Ingenio 2010 CSD2007-00018, TIN2006-15694-C02-02 and TIN2008-04998.
Trabajo presentado al 13th CAIP celebrado en Alemania del 2 al 4 de septiembre de 2009.
Peer Reviewed
Algorismes computacionals -- Processament de dades, Median graph, Graph matching, Algorithms and architectures for advanced scientific computing, Clustering, :Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat
Algorismes computacionals -- Processament de dades, Median graph, Graph matching, Algorithms and architectures for advanced scientific computing, Clustering, :Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 81 | |
| downloads | 1K |

Views provided by UsageCounts
Downloads provided by UsageCounts