Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2019
License: CC BY
Data sources: CONICET Digital
https://dx.doi.org/10.60692/ap...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/p2...
Other literature type . 2020
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

اقتراح ودراسة مقارنة للخوارزميات التطورية للتصميم الأمثل لنظام التروس
Authors: Máximo Méndez; Daniel Alejandro Rossit; Begoña González; Mariano Frutos;

Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

Abstract

Este artículo propone un nuevo marco metaheurístico utilizando un algoritmo de Evolución Diferencial (DE) con el Algoritmo Genético de Clasificación No Dominado-II (NSGA-II). Ambos algoritmos se combinan empleando una estrategia colaborativa con ejecución secuencial, que se denomina DE-NSGA-II. El DE-NSGA-II aprovecha las capacidades de exploración de los algoritmos evolutivos multiobjetivo fortalecidos con la capacidad de buscar un óptimo monoobjetivo global de DE, que mejora la capacidad de encontrar aquellas soluciones extremas de Pareto Optimal Front (POF) difíciles de lograr. Se realizaron numerosos experimentos y comparaciones de rendimiento entre diferentes algoritmos evolutivos sobre un problema de referencia para la literatura mono-objetivo y multi-objetivo, que consiste en el diseño de un tren de engranajes de doble reducción. Un estudio preliminar del problema, resuelto de manera exhaustiva, descubre la baja densidad de soluciones en las proximidades de la solución óptima (caso monoobjetivo), así como en algunas áreas del POF de interés potencial para un tomador de decisiones (caso multiobjetivo). Esta característica del problema explicaría las considerables dificultades para su resolución cuando se utilizan métodos exactos y/o metaheurísticos, especialmente en el caso multiobjetivo. Sin embargo, el marco DE-NSGA-II supera estas dificultades y obtiene el POF completo, lo que mejora significativamente los pocos estudios multiobjetivo anteriores.

Cet article propose un nouveau cadre métaheuristique utilisant un algorithme d'évolution différentielle (DE) avec l'algorithme génétique de tri non dominé II (NSGA-II). Les deux algorithmes sont combinés en utilisant une stratégie collaborative à exécution séquentielle, appelée DE-NSGA-II. Le DE-NSGA-II tire parti des capacités d'exploration des algorithmes évolutifs multi-objectifs renforcés par la capacité de rechercher l'optimum mono-objectif global de DE, ce qui améliore la capacité de trouver ces solutions extrêmes de Pareto Optimal Front (POF) difficiles à atteindre. De nombreuses expériences et comparaisons de performances entre différents algorithmes évolutifs ont été réalisées sur un problème référent pour la littérature mono-objectif et multi-objectif, qui consiste en la conception d'un double train réducteur. Une étude préliminaire du problème, résolue de manière exhaustive, découvre la faible densité de solutions au voisinage de la solution optimale (cas mono-objectif) ainsi que dans certaines zones du POF présentant un intérêt potentiel pour un décideur (cas multi-objectif). Cette caractéristique du problème expliquerait les difficultés considérables pour sa résolution lorsque des méthodes exactes et/ou métaheuristiques sont utilisées, en particulier dans le cas multi-objectif. Cependant, le cadre DE-NSGA-II dépasse ces difficultés et obtient l'ensemble du POF, ce qui améliore considérablement les quelques études multi-objectifs précédentes.

This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.

تقترح هذه الورقة إطار عمل استدلالي جديد باستخدام خوارزمية التطور التفاضلي (DE) مع خوارزمية الفرز الجيني غير المسيطر عليها - II (NSGA - II). يتم الجمع بين كلا الخوارزميتين باستخدام استراتيجية تعاونية مع تنفيذ تسلسلي، وهو ما يسمى DE - NSGA - II. يستفيد DE - NSGA - II من قدرات الاستكشاف للخوارزميات التطورية متعددة الأهداف المعززة بالقدرة على البحث عن الهدف الأحادي العالمي الأمثل لـ DE، مما يعزز القدرة على إيجاد تلك الحلول المتطرفة لـ Pareto Optimal Front (POF) التي يصعب تحقيقها. تم إجراء العديد من التجارب ومقارنات الأداء بين الخوارزميات التطورية المختلفة على مشكلة مرجعية للأدبيات أحادية الهدف ومتعددة الأهداف، والتي تتكون من تصميم قطار ترس تخفيض مزدوج. تكتشف الدراسة الأولية للمشكلة، التي تم حلها بطريقة شاملة، الكثافة المنخفضة للحلول في محيط الحل الأمثل (الحالة أحادية الهدف) وكذلك في بعض مجالات POF ذات الأهمية المحتملة لصانع القرار (الحالة متعددة الأهداف). من شأن هذه الخاصية للمشكلة أن تفسر الصعوبات الكبيرة في حلها عند استخدام الأساليب الدقيقة و/أو ما وراء الاستدلال، خاصة في الحالة متعددة الأهداف. ومع ذلك، فإن إطار عمل DE - NSGA - II يتجاوز هذه الصعوبات ويحصل على إطار عمل كامل مما يحسن بشكل كبير الدراسات السابقة القليلة متعددة الأهداف.

Country
Argentina
Keywords

Iterative Learning Control in Engineering Practice, Artificial intelligence, Gear train optimization, FOS: Mechanical engineering, Surrogate Modeling, Metaheuristic, DIFFERENTIAL EVOLUTION, Engineering, MECHANICAL ENGINEERING, gear train optimization, GENETIC ALGORITHMS, Multi-Objective Optimization, Sorting, Non-dominated sorting genetic algorithm-II, Mathematical optimization, Gear Dynamics, Mechanical engineering, Algorithm, Computational Theory and Mathematics, Genetic algorithm, evolutionary computation, 120304 Inteligencia artificial, Physical Sciences, mechanical engineering, https://purl.org/becyt/ford/2.11, Electrical engineering. Electronics. Nuclear engineering, NON-DOMINATED SORTING GENETIC ALGORITHM-II, multi-objective evolutionary algorithms, Evolutionary computation, genetic algorithms, Evolutionary algorithm, Machine learning, FOS: Mathematics, MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS, https://purl.org/becyt/ford/2, Mechanical Engineering, Genetic algorithms, Computer science, TK1-9971, Dynamics and Faults in Gear Systems, Multi-objective optimization, Control and Systems Engineering, Particle Swarm Optimization, GEAR TRAIN OPTIMIZATION, Computer Science, Differential evolution, EVOLUTIONARY COMPUTATION, Multi-objective evolutionary algorithms, Multiobjective Optimization in Evolutionary Algorithms, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold