
pmid: 36099663
Traffic guidance and traffic control are effective means to alleviate traffic problems. Formulating effective traffic guidance measures can improve the utilization rate of road resources and optimize the performance of the entire traffic network. Assuming that the traffic coordinator can capture traffic flow information in real-time utilizing sensors installed on each road, we consider the strong resilience constraints to construct an optimal selection problem of balanced flow in the traffic network. Based on multi-agent modeling, each agent has access to the corresponding traffic information of each link. We design a distributed optimization algorithm to tackle this optimization problem. In addition to the inherent advantages of distributed multi-agent algorithms, the communication topology among the sensors is allowed to be time-varying, which is more consistent with reality. To prove the effectiveness of the proposed algorithm, we also give a numerical simulation in the multi-agent environment. It should be reiterated that the optimization problem studied in this paper mainly focuses on traffic managers' perspectives. The goal of the studied optimization problem is to minimize the overall cost of the traffic network by adjusting the optimal equilibrium traffic flow. This study provides a reference for solving congestion optimization in today's cities.
Asymptotic stability in control theory, distributed algorithm, equilibrium selection, flow network, мультиагентные системы, Programming involving graphs or networks, strong resilience, Traffic problems in operations research, multi-agent system, Computer Simulation, поточная сеть, Algorithms, распределенные алгоритмы
Asymptotic stability in control theory, distributed algorithm, equilibrium selection, flow network, мультиагентные системы, Programming involving graphs or networks, strong resilience, Traffic problems in operations research, multi-agent system, Computer Simulation, поточная сеть, Algorithms, распределенные алгоритмы
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
