Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sadhanaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sadhana
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel image compression model by adaptive vector quantization: modified rider optimization algorithm

Authors: Pratibha Pramod Chavan; B Sheela Rani; M Murugan; Pramod Chavan;

A novel image compression model by adaptive vector quantization: modified rider optimization algorithm

Abstract

In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm. As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!