
doi: 10.1007/11427186_33
The task of approximate string matching is to find all locations at which a pattern string p of length m matches a substring of a text string t of length n with at most k differences. It is common to use Levenshtein distance [5], which allows the differences to be single-character insertions, deletions, substitutions. Recently, in [3], the IndelMYE, IndelWM and IndelBYN algorithms where introduced as modified version of the bit-parallel algorithms of Myers [6], Wu&Manber [10] and Baeza-Yates&Navarro [1], respectively. These modified versions where made to support the indel distance (only single-character insertions and/or deletions are allowed). In this paper we present an improved version of IndelMYE that makes a better use of the bit-operations and runs 24.5 percent faster in practice. In the end we present a complete set of experimental results to support our findings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
