Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Symbolic-Numeric Algorithm for Solving the Problem of Quantum Tunneling of a Diatomic Molecule through Repulsive Barriers

Authors: Sergue I. Vinitsky; Alexander Gusev 0001; Ochbadrakh Chuluunbaatar; Luong Le Hai; Andrzej Gózdz; Vladimir Derbov; Pavel Krassovitskiy;

Symbolic-Numeric Algorithm for Solving the Problem of Quantum Tunneling of a Diatomic Molecule through Repulsive Barriers

Abstract

Symbolic-numeric algorithm for solving the boundary-value problems that describe the model of quantum tunneling of a diatomic molecule through repulsive barriers is described. Two boundary-value problems (BVPs) in Cartesian and polar coordinates are formulated and reduced to 1D BVPs for different systems of coupled second-order differential equations (SCSODEs) that contain potential matrix elements with different asymptotic behavior. A symbolic algorithm implemented in CAS Maple to calculate the required asymptotic behavior of adiabatic basis, the potential matrix elements, and the fundamental solutions of the SCSODEs is elaborated. Comparative analysis of the potential matrix elements calculated in the Cartesian and polar coordinates is presented. Benchmark calculations of quantum tunneling of a diatomic molecule with the nuclei coupled by Morse potential through Gaussian barriers below dissociation threshold are carried out in Cartesian and polar coordinates using the finite element method, and the results are discussed.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!