
An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.
double pipe heat exchanger, numerical analysis, rectangular cavity, heat transfer, TA1-2040, Engineering (General). Civil engineering (General)
double pipe heat exchanger, numerical analysis, rectangular cavity, heat transfer, TA1-2040, Engineering (General). Civil engineering (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
