Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Robust and Nonlinear Control
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Event‐Triggered Model‐Free Neuroadaptive Iterative Learning Control via Controller Dynamic Linearization and Application to Impact Load Frequency Regulation

Event-triggered model-free neuroadaptive iterative learning control via controller dynamic linearization and application to impact load frequency regulation
Authors: Rui Hou; Li Jia; Xuhui Bu; Chen Peng;

Event‐Triggered Model‐Free Neuroadaptive Iterative Learning Control via Controller Dynamic Linearization and Application to Impact Load Frequency Regulation

Abstract

ABSTRACTThis paper investigates the problem of energy‐efficient learning control for unknown repetitive nonlinear discrete‐time systems. Traditional event‐triggered model‐free iterative learning control (ILC) relies on data‐based approximation models to construct the controller optimization criterion, which is susceptible to model identification errors and the curse of dimensionality. To mitigate this limitation, we propose a novel direct‐type high‐order ILC algorithm that includes online learning capabilities. The control output is derived by directly applying iterative dynamic linearization to an ideal virtual nonlinear learning controller, with learning gains being automatically calibrated in real‐time using a radial basis function neural network (RBFNN). Furthermore, this strategy integrates an adaptive, relative threshold‐based, event‐triggered protocol that is dynamically updated based on the trained neural weights and tracking errors. This approach offers significant advantages over existing strategies. Theoretical proofs demonstrate the convergence of learning gains and tracking errors, and the theoretical results are applied to the frequency regulation of active power impact loads on an experimental platform for steel industry microgrids, validating the effectiveness and applicability of our scheme.

Related Organizations
Keywords

Iterative learning control, iterative learning control, controller-based dynamic linearization, Discrete event control/observation systems, neural networks, Linearizations, Discrete-time control/observation systems, model-free adaptive control, event-triggered protocol, Nonlinear systems in control theory, Frequency-response methods in control theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!