
Sampling from the lattice Gaussian distribution is emerging as an important problem in coding and cryptography. In this paper, the conventional Gibbs sampling algorithm is demonstrated to be geometrically ergodic in tackling with lattice Gaussian sampling, which means its induced Markov chain converges exponentially fast to the stationary distribution. Moreover, as the exponential convergence rate is dominated by the spectral radius of the forward operator of the Markov chain, a comprehensive analysis is given and we show that the convergence performance can be further enhanced by usages of blocked sampling strategy and choices of selection probabilities.
Technology, Markov chain Monte Carlo, lattice coding and decoding, Science & Technology, Engineering, Computer Science, Theory & Methods, Computer Science, Engineering, Electrical & Electronic, Lattice Gaussian sampling
Technology, Markov chain Monte Carlo, lattice coding and decoding, Science & Technology, Engineering, Computer Science, Theory & Methods, Computer Science, Engineering, Electrical & Electronic, Lattice Gaussian sampling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
