Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thermal E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thermal Engineering
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DSpace@HKU
Article . 2023
Data sources: DSpace@HKU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DSpace@HKU
Article . 2023
Data sources: DSpace@HKU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of different wing configurations on missile aerodynamics

Authors: Ahmet ŞUMNU; İbrahim GÜZELBEY;

The effects of different wing configurations on missile aerodynamics

Abstract

In the present study, missile aerodynamic analysis is performed using different wing config-urations at subsonic and transonic speeds. The wing is critical component in point of aero-dynamic efficiency for a missile that speed is especially closer to transonic level because of flow separation. Flow on the wings may adversely effect tailfins of missile at high speed since it may cause vortex generation and flow disturbances. There are few studies that investigate the missile wing using different configurations at critical speeds when examined the previ-ous studies. Therefore, in this study, three different wing configurations are investigated and aerodynamic performance is compared with each other at 0.7 and 0.9 Mach numbers and 5° angle of attack (AoA). In beginning of this study, missile model with only tailfins is selected from previous study that contains experimental data. Because the experimental data for the selected missile model are available at supersonic speeds, the aerodynamic analysis to verify the solutions is carried out at supersonic speeds. After wing is mounted to the selected missile, aerodynamic analysis is carried out using three different wing configurations that are Tapered Leading Edge, Tapered Trailing Edge, and Double Tapered wings. Lift to drag ratio (CL/CD) is calculated to compare wing configurations and it is concluded that Tapered Leading Edge wing configuration shows higher performance then other wing configurations. CL/CD values are 2.327, 2.306, 2.303 at 0.7 Mach number and 2.45, 2.429, 2.423 at 0.9 Mach number for Tapered Leading Edge, Tapered Trailing Edge, and Double Tapered, respectively. When the results are compared each other, CL/CD values at 0.9 Mach number is higher about % 5.28, %5.33 and %5.21 than the CL/CD values at 0.7 Mach number for missile with Tapered Leading Edge, Tapered Trailing Edge, and Double Tapered, respectively.

Keywords

Missile Aerodynamics;Turbulence Model;Missile WingConfiguration;CFD, Missile aerodynamics, Projectiles, Turbulence model, Missiles, Electrical Engineering, Electronics & Computer Science - Automation & Control Systems - Guidance Law, Turbulence Model, Projectile, Thermodynamics and Statistical Physics, Shape optimization, Missile wing configuration, Termodinamik ve İstatistiksel Fizik, Missile Wing Configuration, Canard, CFD, Missile Aerodynamics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold