
doi: 10.1029/2024av001438
AbstractUrban trees are increasingly used by cities for cooling and climate adaptation. However, efforts to increase tree cover across cities have neglected to account for the trees' health and function, which are known to control their associated environmental benefits but have been difficult to assess at scales relevant for management. Here, we use remotely sensed, high resolution canopy temperature as a proxy for tree health and function and evaluate its relation to the built environment across Minneapolis‐St. Paul (MSP) using machine learning analyses. We develop a new index that incorporates information on urban trees' health and function, in addition to their presence. This index, when applied across MSP, suggests that canopy benefits may not be distributed equally even in neighborhoods with similar canopy cover. Furthermore, accounting for tree health and function can yield more effective and equitable benefits by guiding the location and magnitude of intervention for urban tree management.
QE1-996.5, green infrastructure, QC801-809, urban heat island effect, Geophysics. Cosmic physics, Geology, heat mitigation, urban trees, canopy temperature
QE1-996.5, green infrastructure, QC801-809, urban heat island effect, Geophysics. Cosmic physics, Geology, heat mitigation, urban trees, canopy temperature
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
