
Algorithms for solving the Bounded Distance Decoding problem (BDD) are used for estimating the security of lattice-based cryptographic primitives, since these algorithms can be employed to solve variants of the Learning with Errors problem (LWE). In certain parameter regimes where the target vector is small and/or sparse, batches of BDD instances emerge from a combinatorial approach where several components of the target vector are guessed before decoding. In this work we explore trade-offs in solving “Batch-BDD”, and apply our techniques to the small-secret Learning with Errors problem. We compare our techniques to previous works which solve batches of BDD instances, such as the hybrid lattice-reduction and meet-in-the-middle attack. Our results are a mixed bag. We show that, in the “enumeration setting” and with BKZ reduction, our techniques outperform a variant of the hybrid attack which does not consider time-memory trade-offs in the guessing phase for certain Round5 (17-bits out of 466), Round5-IoT (19-bits out of 240), and NTRU LPrime (23-bits out of 385) parameter sets. On the other hand, our techniques do not outperform the Hybrid Attack under standard, albeit unrealistic, assumptions. Finally, as expected, our techniques do not improve on previous works in the “sieving setting” (under standard assumptions) where combinatorial attacks in general do not perform well.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
