
arXiv: 2509.21115
Multicast for securely sharing confidential data among many users is becoming increasingly important. Currently, it relies on duplicate-and-forward routing and cryptographic methods based on computational security. However, these approaches neither attain multicast capacity of the network, nor ensure long-term security against advances in computing (information-theoretic security: ITS). Existing ITS solutions--quantum key distribution (QKD), physical layer security (PLS), and secure network coding (SNC)--still fail to enable scalable networks, as their underlying assumptions, such as trusted nodes and wiretap thresholds, gradually become invalid as the network grows. Here, we develop an efficient multi-tree multicast path-finding method to address this issue, integrating it with universal strongly ramp SNC. This system, path-controlled universal strongly ramp SNC (PUSNEC), can be overlaid onto QKD/PLS networks, enabling multicast capacity, ITS, and scalability. We derive the maximum leakage information to an eavesdropper under the probabilistic wiretap network assumption and demonstrate secure multicast in multi-hop networks through numerical simulations. Our quantitative analysis of the secrecyreliability tradeoff highlights a practical approach to achieving secure, reliable multicast on a global scale.
59-page PDF including 13-page main text (6 figures) and 46-page supplementary material (16 figures, 11 tables)
FOS: Computer and information sciences, Quantum Physics, Information Theory (cs.IT), Information Theory, FOS: Physical sciences, Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Information Theory (cs.IT), Information Theory, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
