Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Resources Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break

Authors: Manhua Luo; Hailong Li; Gang Li; Wei Wang; Shengchao Yu; Qian Ma; Yan Zheng;

The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break

Abstract

AbstractCoastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large‐scale seepage faces at Laizhou Bay, China. Results showed that seepage‐face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring‐neap tidal cycle. The outflow and inflow fluxes over a spring‐neap tidal cycle were numerically estimated to be 1.46 and 1.27 m2/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi‐layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.

Related Organizations
Keywords

Environmental sciences, aquitard, solute transport, groundwater flow path, slope break, GE1-350, multi‐layered coastal aquifer system, evaporation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities