Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
SIAM Journal on Matrix Analysis and Applications
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Numerically Stable Communication-Avoiding \({s}\)-Step GMRES Algorithm

A numerically stable communication-avoiding \(s\)-step GMRES algorithm
Authors: Zan Xu; Juan J. Alonso; Eric Darve;

A Numerically Stable Communication-Avoiding \({s}\)-Step GMRES Algorithm

Abstract

Krylov subspace methods are extensively used in scientific computing to solve large-scale linear systems. However, the performance of these iterative Krylov solvers on modern supercomputers is limited by expensive communication costs. The $s$-step strategy generates a series of $s$ Krylov vectors at a time to avoid communication. Asymptotically, the $s$-step approach can reduce communication latency by a factor of $s$. Unfortunately, due to finite-precision implementation, the step size has to be kept small for stability. In this work, we tackle the numerical instabilities encountered in the $s$-step GMRES algorithm. By choosing an appropriate polynomial basis and block orthogonalization schemes, we construct a communication avoiding $s$-step GMRES algorithm that automatically selects the optimal step size to ensure numerical stability. To further maximize communication savings, we introduce scaled Newton polynomials that can increase the step size $s$ to a few hundreds for many problems. An initial step size estimator is also developed to efficiently choose the optimal step size for stability. The guaranteed stability of the proposed algorithm is demonstrated using numerical experiments. In the process, we also evaluate how the choice of polynomial and preconditioning affects the stability limit of the algorithm. Finally, we show parallel scalability on more than 114,000 cores in a distributed-memory setting. Perfectly linear scaling has been observed in both strong and weak scaling studies with negligible communication costs.

36 pages, 15 figures

Related Organizations
Keywords

Iterative numerical methods for linear systems, Roundoff error, linear algebra, numerical stability, parallel computing, communication-avoiding techniques, FOS: Mathematics, Parallel numerical computation, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), GMRES, Orthogonalization in numerical linear algebra

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green