
arXiv: 2303.08953
Krylov subspace methods are extensively used in scientific computing to solve large-scale linear systems. However, the performance of these iterative Krylov solvers on modern supercomputers is limited by expensive communication costs. The $s$-step strategy generates a series of $s$ Krylov vectors at a time to avoid communication. Asymptotically, the $s$-step approach can reduce communication latency by a factor of $s$. Unfortunately, due to finite-precision implementation, the step size has to be kept small for stability. In this work, we tackle the numerical instabilities encountered in the $s$-step GMRES algorithm. By choosing an appropriate polynomial basis and block orthogonalization schemes, we construct a communication avoiding $s$-step GMRES algorithm that automatically selects the optimal step size to ensure numerical stability. To further maximize communication savings, we introduce scaled Newton polynomials that can increase the step size $s$ to a few hundreds for many problems. An initial step size estimator is also developed to efficiently choose the optimal step size for stability. The guaranteed stability of the proposed algorithm is demonstrated using numerical experiments. In the process, we also evaluate how the choice of polynomial and preconditioning affects the stability limit of the algorithm. Finally, we show parallel scalability on more than 114,000 cores in a distributed-memory setting. Perfectly linear scaling has been observed in both strong and weak scaling studies with negligible communication costs.
36 pages, 15 figures
Iterative numerical methods for linear systems, Roundoff error, linear algebra, numerical stability, parallel computing, communication-avoiding techniques, FOS: Mathematics, Parallel numerical computation, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), GMRES, Orthogonalization in numerical linear algebra
Iterative numerical methods for linear systems, Roundoff error, linear algebra, numerical stability, parallel computing, communication-avoiding techniques, FOS: Mathematics, Parallel numerical computation, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), GMRES, Orthogonalization in numerical linear algebra
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
