Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing in Ecology and Conservation
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2025 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques

Authors: Erbs, Florence Amandine; Van der Schaar, Mike Connor Roger Malcolm; Marmontel, Miriam; Gaona Calderón, Marina; Ramalho, Emiliano; André, Michel;

Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques

Abstract

AbstractFor many species at risk, monitoring challenges related to low visual detectability and elusive behavior limit the use of traditional visual surveys to collect critical information, hindering the development of sound conservation strategies. Passive acoustics can cost‐effectively acquire terrestrial and underwater long‐term data. However, to extract valuable information from large datasets, automatic methods need to be developed, tested and applied. Combining passive acoustics with deep learning models, we developed a method to monitor the secretive Amazonian manatee over two consecutive flooded seasons in the Brazilian Amazon floodplains. Subsequently, we investigated the vocal behavior parameters based on vocalization frequencies and temporal characteristics in the context of habitat use. A Convolutional Neural Network model successfully detected Amazonian manatee vocalizations with a 0.98 average precision on training data. Similar classification performance in terms of precision (range: 0.83–1.00) and recall (range: 0.97–1.00) was achieved for each year. Using this model, we evaluated manatee acoustic presence over a total of 226 days comprising recording periods in 2021 and 2022. Manatee vocalizations were consistently detected during both years, reaching 94% daily temporal occurrence in 2021, and up to 11 h a day with detections during peak presence. Manatee calls were characterized by a high emphasized frequency and high repetition rate, being mostly produced in rapid sequences. This vocal behavior strongly indicates an exchange between females and their calves. Combining passive acoustic monitoring with deep learning models, and extending temporal monitoring and increasing species detectability, we demonstrated that the approach can be used to identify manatee core habitats according to seasonality. The combined method represents a reliable, cost‐effective, scalable ecological monitoring technique that can be integrated into long‐term, standardized survey protocols of aquatic species. It can considerably benefit the monitoring of inaccessible regions, such as the Amazonian freshwater systems, which are facing immediate threats from increased hydropower construction.

Keywords

570, Technology, Àrees temàtiques de la UPC::Enginyeria agroalimentària::Ciències de la terra i de la vida::Biologia, Ecology, T, Sirenians, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial, deep learning, habitat, Deep learning, South America, bioacoustics, Habitat, Vocal repertoire, Bioacoustics, QH540-549.5, vocal repertoire

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 10
  • 10
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
1
Average
Average
Average
10
Green
gold