Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Swarm and Evolutiona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Swarm and Evolutionary Computation
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A parameter-free discrete particle swarm algorithm and its application to multi-objective pavement maintenance schemes

Authors: Maher Mahmood; Senthan Mathavan; Mujib Rahman;

A parameter-free discrete particle swarm algorithm and its application to multi-objective pavement maintenance schemes

Abstract

Abstract Regular maintenance is paramount for a healthy road network, the arteries of any economy. As the resources for maintenance are limited, optimization is necessary. A number of conflicting objectives exist with many influencing variables. Although many methods have been proposed, the related research is very active, due to difficulties in adoption to the actual practice owing to reasons such high-dimensional problems even for small road networks. Literature survey tells that particle swarms have not been exploited much, mainly due to unavailability of many techniques in this domain for multi-objective discrete problems like this. In this work, a novel particle swarm algorithm is proposed for a general, discrete, multi-objective problem. In contrast to the standard particle swarm, the bare-bones technique has a clear advantage in that it is a parameter-free technique, hence the end users need not be optimization experts. However, the existing barebones algorithm is available only for continuous domains, sans any particle velocity terms. For discrete domains, the proposed method introduces a parameter-free velocity term to the standard bare-bones algorithm. Based on the peak velocities observed by the different dimensions of a particle, its new position is calculated. A number of benchmark test functions are also solved. The results show that the proposed algorithm is highly competitive and able to obtain much better spread of solutions compared to three other existing PSO and genetic algorithms. The method is benchmarked against a number of other algorithms on an actual pavement maintenance problem. When compared against another particle swarm algorithm, it not only shows better performance, but also significant reduction in run-time compared to other POS algorithm. Hence, for large road network maintenance, the proposed method shows a lot of promise in terms of analysis time, while improving on the quality of solutions.

Country
United Kingdom
Related Organizations
Keywords

Multi-objective optimization, Particle swarm optimization, Pavement maintenance, Discrete optimization, Bare-bones, 620, 004, Pavement management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green
bronze