Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ANZIAM Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ANZIAM Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ANZIAM Journal
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A parallel approach to bi-objective integer programming

Authors: William Pettersson; Melih Ozlen;

A parallel approach to bi-objective integer programming

Abstract

To obtain a better understanding of the trade-offs between various objectives, Bi-Objective Integer Programming (BOIP) algorithms calculate the set of all non-dominated vectors and present these as the solution to a BOIP problem. Historically, these algorithms have been compared in terms of the number of single-objective IPs solved and total CPU time taken to produce the solution to a problem. This is equitable, as researchers can often have access to widely differing amounts of computing power. However, the real world has recently seen a large uptake of multi-core processors in computers, laptops, tablets and even mobile phones. With this in mind, we look at how to best utilise parallel processing to improve the elapsed time of optimisation algorithms. We present two methods of parallelising the recursive algorithm presented by Ozlen, Burton and MacRae. Both new methods utilise two threads and improve running times. One of the new methods, the Meeting algorithm, halves running time to achieve near-perfect parallelisation. The results are compared with the efficiency of parallelisation within the commercial IP solver IBM ILOG CPLEX, and the new methods are both shown to perform better.

7 pages

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Optimization and Control (math.OC), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC), Mathematics - Optimization and Control, 90-08, 90C29,

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
bronze