Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Communicatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital Communications and Networks
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adjustable random linear network coding (ARLNC): A solution for data transmission in dynamic IoT computational environments

Authors: Raffi Dilanchian; Ali Bohlooli; Kamal Jamshidi;

Adjustable random linear network coding (ARLNC): A solution for data transmission in dynamic IoT computational environments

Abstract

In mobile computing environments, most IoT devices connected to networks experience variable error rates and possess limited bandwidth. The conventional method of retransmitting lost information during transmission, commonly used in data transmission protocols, increases transmission delay and consumes excessive bandwidth. To overcome this issue, forward error correction techniques, e.g., Random Linear Network Coding (RLNC) can be used in data transmission. The primary challenge in RLNC-based methodologies is sustaining a consistent coding ratio during data transmission, leading to notable bandwidth usage and transmission delay in dynamic network conditions. Therefore, this study proposes a new block-based RLNC strategy known as Adjustable RLNC (ARLNC), which dynamically adjusts the coding ratio and transmission window during runtime based on the estimated network error rate calculated via receiver feedback. The calculations in this approach are performed using a Galois field with the order of 256. Furthermore, we assessed ARLNC's performance by subjecting it to various error models such as Gilbert Elliott, exponential, and constant rates and compared it with the standard RLNC. The results show that dynamically adjusting the coding ratio and transmission window size based on network conditions significantly enhances network throughput and reduces total transmission delay in most scenarios. In contrast to the conventional RLNC method employing a fixed coding ratio, the presented approach has demonstrated significant enhancements, resulting in a 73% decrease in transmission delay and a 4 times augmentation in throughput. However, in dynamic computational environments, ARLNC generally incurs higher computational costs than the standard RLNC but excels in high-performance networks.

Related Organizations
Keywords

Galois field, Random linear network coding, Internet of Things, Information technology, T58.5-58.64, Adjust redundancy, Data transfer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold