
arXiv: 2103.00815
The purpose of the present paper is to study the computation complexity of deep ReLU neural networks to approximate functions in H\"older-Nikol'skii spaces of mixed smoothness $H_\infty^\alpha(\mathbb{I}^d)$ on the unit cube $\mathbb{I}^d:=[0,1]^d$. In this context, for any function $f\in H_\infty^\alpha(\mathbb{I}^d)$, we explicitly construct nonadaptive and adaptive deep ReLU neural networks having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, and prove dimension-dependent bounds for the computation complexity of this approximation, characterized by the size and the depth of this deep ReLU neural network, explicitly in $d$ and $\varepsilon$. Our results show the advantage of the adaptive method of approximation by deep ReLU neural networks over nonadaptive one.
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
