Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics Selection Evolution
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics Selection Evolution
Article . 2025
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of genomic selection models using whole genome sequence data and functional annotation in Belgian Blue cattle

Authors: Yuan, Can; Gillon, Alain; Gualdrón Duarte, José Luis; Takeda, Haruko; Coppieters, Wouter; Georges, Michel; Druet, Tom;

Evaluation of genomic selection models using whole genome sequence data and functional annotation in Belgian Blue cattle

Abstract

Abstract Background The availability of large cohorts of whole-genome sequenced individuals, combined with functional annotation, is expected to provide opportunities to improve the accuracy of genomic selection (GS). However, such benefits have not often been observed in initial applications. The reference population for GS in Belgian Blue Cattle (BBC) continues to grow. Combined with the availability of reference panels of sequenced individuals, it provides an opportunity to evaluate GS models using whole genome sequence (WGS) data and functional annotation. Results Here, we used data from 16,508 cows, with phenotypes for five muscular development traits and imputed at the WGS level, in combination with in silico functional annotation and catalogs of putative regulatory variants obtained from experimental data. We evaluated first GS models using the entire WGS data, with or without functional annotation. At this marker density, we were able to run two approaches, assuming either a highly polygenic architecture (GBLUP) or allowing some variants to have larger effects (BayesRR-RC, a Bayesian mixture model), and observed an increased reliability compared to the official GBLUP model at medium marker density (on average 0.016 and 0.018 for GBLUP and BayesRR-RC, respectively). When functional annotation was used, we observed slightly higher reliabilities with an extension of GBLUP that included multiple polygenic terms (one per functional group), while reliabilities decreased with BayesRR-RC. We then used large subsets of variants selected based on functional information or with a linkage disequilibrium (LD) pruning approach, which allowed us to evaluate two additional approaches, BayesCπ and Bayesian Sparse Linear Mixed Model (BSLMM). Reliabilities were higher for these panels than for the WGS data, with the highest accuracies obtained when markers were selected based on functional information. In our setting, BSLMM systematically achieved higher reliabilities than other methods. Conclusions GS with large panels of functional variants selected from WGS data allowed a significant increase in reliability compared to the official genomic evaluation approach. However, the benefits of using WGS and functional data remained modest, indicating that there is still room for improvement, for example by further refining the functional annotation in the BBC breed.

Country
Belgium
Keywords

Quantitative Trait Loci, Molecular Sequence Annotation/methods, Genetics & genetic processes, QH426-470, Breeding, SF1-1100, Polymorphism, Single Nucleotide, Génétique & processus génétiques, Whole Genome Sequencing/methods, Genetics, Animals, Animal production & animal husbandry, Cattle/genetics, Selection, Genetic, Genome, Models, Genetic, Whole Genome Sequencing, Bayes Theorem, Molecular Sequence Annotation, Genomics, Life sciences, Productions animales & zootechnie, Genomics/methods, Animal culture, Phenotype, Sciences du vivant, Cattle, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold