Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed programming framework for fast iterative optimization in networked cyber-physical systems

Authors: Rahul Balani; Lucas F. Wanner; Mani B. Srivastava;

Distributed programming framework for fast iterative optimization in networked cyber-physical systems

Abstract

Large-scale coordination and control problems in cyber-physical systems are often expressed within the networked optimization model. While significant advances have taken place in optimization techniques, their widespread adoption in practical implementations has been impeded by the complexity of internode coordination and lack of programming support for the same. Currently, application developers build their own elaborate coordination mechanisms for synchronized execution and coherent access to shared resources via distributed and concurrent controller processes. However, they typically tend to be error prone and inefficient due to tight constraints on application development time and cost. This is unacceptable in many CPS applications, as it can result in expensive and often irreversible side-effects in the environment due to inaccurate or delayed reaction of the control system. This article explores the design of a distributed shared memory (DSM) architecture that abstracts the details of internode coordination. It simplifies application design by transparently managing routing, messaging, and discovery of nodes for coherent access to shared resources. Our key contribution is the design of provably correct locality-sensitive synchronization mechanisms that exploit the spatial locality inherent in actuation to drive faster and scalable application execution through opportunistic data parallel operation. As a result, applications encoded in the proposed Hotline Application Programming Framework are error free, and in many scenarios, exhibit faster reactions to environmental events over conventional implementations. Relative to our prior work, this article extends Hotline with a new locality-sensitive coordination mechanism for improved reaction times and two tunable iteration control schemes for lower message costs. Our extensive evaluation demonstrates that realistic performance and cost of applications are highly sensitive to the prevalent deployment, network, and environmental characteristics. This highlights the importance of Hotline, which provides user-configurable options to trivially tune these metrics and thus affords time to the developers for implementing, evaluating, and comparing multiple algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!