Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Fast Parallel Processing Algorithm for Triangle Collision Detection Based on AABB and Octree Space Slicing in Unity3D

Authors: Kunthroza Hor; Nak-Jun Sung; Jun Ma; Min-Hyung Choi; Min Hong;

A Fast Parallel Processing Algorithm for Triangle Collision Detection Based on AABB and Octree Space Slicing in Unity3D

Abstract

This research develops an effective and precise collision detection (CD) algorithm for real-time simulation in virtual environments such as computer graphics, realistic and immersive virtual reality (VR), augmented reality (AR) and physical-based simulation within an enhanced algorithm for object collision detection in 3D geometry. We describe an improved algorithm through a comparison in the application of a central processing unit (CPU) and graphics processing units (GPU). Although leveraging CPU for computational speed improvements has gained significant recognition in recent years, this study distinguishes by tracking 3D geometry bounding volume hierarchy (BVH) constructed in a spatial decomposition structure with a focus on Octree-based Axis-Aligned Bounding Box (AABB) structure in 3D scene to compute collision detection to swiftly reject disjoint objects and minimize the number of triangle primitives that need to be processed and then the Möller method is utilized to compute precise triangle primitives, further enhancing the efficiency and precision of the collision detection process. This approach is also designed to implement computation with GPU which utilizes the high-level shader language (HLSL) programming language on the compute shader Unity3D. AABB is structured as the maximum and minimum hexahedron enclosing an object that is parallel to the coordinate axis. Otherwise, GPU computational technique is a crucial method for further enhancing the object’s performance. The proposed method utilizes Octree AABB-based GPU parallel processing to reduce the computational load of real-time collision detection simulations and to handle multiple computations simultaneously. Comparative performance evaluations demonstrate that our GPU-accelerated framework consistently reaches the fastest collision detection times from 1.01 to 45.62 times, respectively.

Keywords

octree, Collision detection, space slicing, GPU parallel processing, compute shader, Electrical engineering. Electronics. Nuclear engineering, spatial division, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold