Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility

Authors: Wang, Yunlong; Sommer, Björn; Schreiber, Falk; Reiterer, Harald;

Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility

Abstract

Extracting significant places or places of interest (POIs) using individuals’ spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach – namely POI clustering with temporal constraints (PC-TC) – to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.

published

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Places of Interest (POI), Human Mobility, Hierarchical Clustering, Predictability Limit, info:eu-repo/classification/ddc/004, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green