
arXiv: 1807.00546
Extracting significant places or places of interest (POIs) using individuals’ spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach – namely POI clustering with temporal constraints (PC-TC) – to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.
published
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Places of Interest (POI), Human Mobility, Hierarchical Clustering, Predictability Limit, info:eu-repo/classification/ddc/004, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Places of Interest (POI), Human Mobility, Hierarchical Clustering, Predictability Limit, info:eu-repo/classification/ddc/004, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
