Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology

Authors: David A. Bader;

High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology

Abstract

Many large-scale optimization problems rely on graph theoretic solutions; yet high-performance computing has traditionally focused on regular applications with high degrees of locality. We describe our novel methodology for designing and implementing irregular parallel algorithms that attain significant performance on high-end computer systems. Our results for several fundamental graph theory problems are the first ever to achieve parallel speedups. Specifically, we have demonstrated for the first time that significant parallel speedups are attainable for arbitrary instances of a variety of graph problems and are developing a library of fundamental routines for discrete optimization (especially in computational biology) on shared-memory systems. Phylogenies derived from gene order data may prove crucial in answering some fundamental questions in biomolecular evolution. High-performance algorithm engineering offers a battery of tools that can reduce, sometimes spectacularly, the running time of existing approaches. We discuss one such such application, GRAPPA, that demonstrated over a billion-fold speedup in running time (on a variety of real and simulated datasets), by combining low-level algorithmic improvements, cache-aware programming, careful performance tuning, and massive parallelism. We show how these techniques are directly applicable to a large variety of problems in computational biology.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!