
Статья посвящена исследованию и сравнению различных методов оптимизации при обучении нейронных сетей. Рассматриваются ключевые алгоритмы, такие как стохастический градиентный спуск, метод Momentum, AdaGrad и Adam. Для каждого метода предоставляются теоретические обоснования, математические формулы и примеры реализации на практике. Проведено экспериментальное сравнение эффективности этих методов на задаче классификации рукописных цифр с использованием набора данных MNIST. Обсуждаются преимущества и недостатки каждого метода, а также их влияние на скорость обучения и точность модели. На основе полученных результатов подводится итог о наиболее эффективном алгоритме, подчеркивается важность выбора подходящего метода оптимизации для повышения эффективности нейронных сетей в различных приложениях.
Momentum, AdaGrad, T1-995, Adam, нейронные сети, оптимизация, стохастический градиентный спуск, Technology (General)
Momentum, AdaGrad, T1-995, Adam, нейронные сети, оптимизация, стохастический градиентный спуск, Technology (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
