Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational Biology
Article . 2024 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Approximate and Exact Optimization Algorithms for the Beltway and Turnpike Problems with Duplicated, Missing, Partially Labeled, and Uncertain Measurements

Authors: C. S. Elder; Minh Hoang; Mohsen Ferdosi; Carl Kingsford;

Approximate and Exact Optimization Algorithms for the Beltway and Turnpike Problems with Duplicated, Missing, Partially Labeled, and Uncertain Measurements

Abstract

The Turnpike problem aims to reconstruct a set of one-dimensional points from their unordered pairwise distances. Turnpike arises in biological applications such as molecular structure determination, genomic sequencing, tandem mass spectrometry, and molecular error-correcting codes. Under noisy observation of the distances, the Turnpike problem is NP-hard and can take exponential time and space to solve when using traditional algorithms. To address this, we reframe the noisy Turnpike problem through the lens of optimization, seeking to simultaneously find the unknown point set and a permutation that maximizes similarity to the input distances. Our core contribution is a suite of algorithms that robustly solve this new objective. This includes a bilevel optimization framework that can efficiently solve Turnpike instances with up to 100,000 points. We show that this framework can be extended to scenarios with domain-specific constraints that include duplicated, missing, and partially labeled distances. Using these, we also extend our algorithms to work for points distributed on a circle (the Beltway problem). For small-scale applications that require global optimality, we formulate an integer linear program (ILP) that (i) accepts an objective from a generic family of convex functions and (ii) uses an extended formulation to reduce the number of binary variables. On synthetic and real partial digest data, our bilevel algorithms achieved state-of-the-art scalability across challenging scenarios with performance that matches or exceeds competing baselines. On small-scale instances, our ILP efficiently recovered ground-truth assignments and produced reconstructions that match or exceed our alternating algorithms. Our implementations are available at https://github.com/Kingsford-Group/turnpikesolvermm.

Related Organizations
Keywords

Computational Biology, Humans, Research Articles, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green